Aim: re-run deconvolution with Scaden, using combination of endothelial cell and pericytes as one cell type i.e. vascular cell.
source(here::here("R", "file_paths.R"))
path_to_scaden_results <- file.path(path_to_results, "deconvolution/scaden/")
sample_info <-
read_excel(path =
file.path(
path_to_raw_data,
"sample_details/20201229_MasterFile_SampleInfo.xlsx"
),
sheet = "SampleInfo", skip = 1) %>%
dplyr::filter(Sample_Type == "Tissue section" & sent_to_bulk_seq == "yes") %>%
dplyr::select(CaseNo, Disease_Group, Sex, AoO, AoD, DD, PMI, aSN, TAU, 'thal AB', 'aCG aSN score', Genetics, RINe_bulkRNA_Tapestation) %>%
dplyr::mutate(Disease_Group = fct_relevel(Disease_Group,
c("Control", "PD", "PDD","DLB"))) %>%
dplyr::rename(sample_id = CaseNo)
knitr::include_graphics(
here::here("docs", "deconvolution", "EndoPer_2020_02_05T13_55_14_495Z.png")
)
Figure 2.1: Heatmap of expression of pericyte markers in a representative sample. At the top, nuclei are clustered by expression of these markers, and the top bar of colour represents what the nuclei were originally labelled as in clustering.*
Steps include:
# Read in new cell type labels
ct <-
read_delim(file =
file.path(path_to_raw_data,
"Cell.Type.Annotations.For.All.Samples.csv"),
delim = " ",
col_names = c("ID", "Celltype"),
skip = 1)
# Read in old celltype file
# Create dataframe of scaden-formatted files
old_path <- file.path(path_to_raw_data, "deconvolution/scaden/2019Oct/")
sn_df <- data.frame(
file_path = list.files(path = old_path, full.names = T, include.dirs = F),
files = list.files(path = old_path, include.dirs = F),
sample_name = list.files(path = old_path, include.dirs = F) %>%
str_replace("_.*", ""),
file_type = list.files(path = old_path, include.dirs = F) %>%
str_replace(".txt", "") %>%
str_remove("^.*?_")) %>%
dplyr::filter(file_type %in% c("norm_counts_all", "celltypes"))
# Extract sample names for loop
samples <- sn_df %>% .[["sample_name"]] %>% as.character() %>% unique()
# Loop to load in files
for (i in 1:length(samples)) {
celltype <- read_delim(file = sn_df %>%
dplyr::filter(sample_name == samples[i], file_type == "celltypes") %>%
.[["file_path"]] %>%
as.character(),
delim = "\t") %>%
dplyr::mutate(sample_name = samples[i])
if(i == 1){
master_df <- celltype
}else{
master_df <- master_df %>%
dplyr::bind_rows(celltype)
}
}
# Calculate difference in numbers assigned to each cell type between old and new labels
ct %>%
tidyr::separate(ID, into = c("sample_name", "disease_group", "barcode"), sep = "_") %>%
dplyr::group_by(sample_name, Celltype) %>%
dplyr::summarise(n_new_labels = n()) %>%
dplyr::filter(sample_name %in% samples) %>%
dplyr::full_join(master_df %>%
dplyr::group_by(sample_name, Celltype) %>%
dplyr::summarise(n_old_labels = n())) %>%
dplyr::mutate(diff = n_new_labels - n_old_labels)
# copy files into container from server
docker cp /home/rreynolds/projects/Aim2_PDsequencing_wd/raw_data/deconvolution/scaden/2019Oct/ scaden_rreynolds:/home/data/PD_seq/scaden_2020Feb/
docker cp /home/rreynolds/projects/Aim2_PDsequencing_wd/raw_data/deconvolution/scaden/2020Feb/ scaden_rreynolds:/home/data/PD_seq/scaden_2020Feb/
# Re-initiate docker
docker exec -it scaden_rreynolds bash
# move files within docker to directory samples/
cd /home/data/PD_seq/scaden_2020Feb/
mkdir samples
cd /home/data/PD_seq/scaden_2020Feb/2019Oct
mv *.txt /home/data/PD_seq/scaden_2020Feb/samples/
cd /home/data/PD_seq/scaden_2020Feb/2020Feb/
mv *.txt /home/data/PD_seq/scaden_2020Feb/samples/
# Run script
bash /home/scripts/scaden_script.sh --sample_dir=/home/data/PD_seq/scaden_2020Feb/samples/ --n_cells=1000 --n_simulated_samples=1000 --n_training_steps=5000 --pred_path=/home/data/PD_seq/scaden/samples/bulkRNAseq_norm_counts.txt
# Copy docker output to server
docker cp scaden_rreynolds:/home/data/PD_seq/scaden_2020Feb/cells.1000_samples.1000/scaden_predictions_cells.1000:samples.1000.txt /home/rreynolds/projects/Aim2_PDsequencing_wd/results/deconvolution/scaden/2020Feb/scaden_predictions_cells.1000:samples.1000.txt
## Check number of genes in common between training data and bulk data (see dataset.dims in .h5ad object X)
library(hdf5r)
# docker cp scaden_rreynolds:/home/data/PD_seq/scaden_2020Feb/cells.1000_samples.1000/processed_pdseq_bulksim.h5ad /home/rreynolds/downloads/processed_pdseq_bulksim.h5ad
file.h5 <- H5File$new("/home/rreynolds/downloads/processed_pdseq_bulksim.h5ad", mode="r+")
file.h5$ls(recursive=TRUE) # 13191 x 24000
file.h5$close_all()
#----Loading results----
# Source functions
source(here::here("R", "scaden_rankings_and_calculate_ratios.R"))
# Calculate cell type proportions from cell type assignments
sn_proportions <-
ct %>%
dplyr::mutate(Celltype = case_when(Celltype %in% c("Endo", "Per") ~ "Vascular",
TRUE ~ Celltype)) %>%
tidyr::separate(ID, into = c("sample_id", "disease_group", "ID"), sep = "_") %>%
dplyr::mutate(sample_id = case_when(sample_id == "C36" ~ "C036",
sample_id == "C48" ~ "C048",
TRUE ~ sample_id)) %>%
dplyr::group_by(Celltype, sample_id) %>%
dplyr::summarise(n = n()) %>%
dplyr::group_by(sample_id) %>%
dplyr::mutate(snRNA_proportions = n/sum(n)) %>%
dplyr::ungroup() %>%
dplyr::select(-n) %>%
tidyr::spread(key = Celltype, value = snRNA_proportions)
# Create dataframe with cell type classes
cell_type_class <- data.frame(Celltype = sn_proportions %>%
dplyr::select(-sample_id) %>%
colnames() %>%
sort(),
Celltype_class = factor(c("Astrocyte", "Neuron", "Neuron",
"Immune", "Oligo", "Oligo", "Vascular"),
levels=c("Astrocyte", "Immune", "Oligo", "Vascular",
"Neuron")))
# Read in scaden predictions, determine within-sample rankings of cell-types by proportions, and calculate glia-to-neuron and non-neuron-to-neuron ratios
results <- scaden_rankings_and_calculate_ratios(prediction_dir = file.path(path_to_scaden_results, "2020Feb"),
unclassified_cell_type = "Unclassified",
sample_info = sample_info %>%
dplyr::select(sample_id, Disease_Group),
snRNAseq_proportions = sn_proportions,
cell_type_class = cell_type_class,
glia = vars(Astro, Microglia, Oligo, OPC),
nonneuron = vars(Astro, Vascular, Microglia, Oligo, OPC),
neuron = vars(Excitatory, Inhibitory),
astrocyte = vars(Astro),
oligos = vars(Oligo, OPC),
microglia = vars(Microglia))
# # Export cell-type proportions
# write_delim(sn_proportions, file.path(path_to_scaden_results, "2020Feb/snRNA_proportions.txt"), delim = "\t")
#
# write_delim(results$ranks %>%
# dplyr::select(-rank_within_sample),
# file.path(path_to_scaden_results, "2020Feb/scaden_summary_results.txt"), delim = "\t")
# saveRDS(results, file.path(path_to_scaden_results, "2020Feb/scaden_summary_results.Rds"))
# Read in old results
old_results <- read_delim(file = file.path(path_to_scaden_results, "2019Oct/scaden_summary_results.txt"),
delim = "\t")
# Merge endo and per
old_results <-
old_results %>%
dplyr::mutate(Celltype = case_when(Celltype %in% c("Endo", "Per") ~ "Vascular",
TRUE ~ Celltype)) %>%
dplyr::group_by(sample_id, Celltype, source, cells, samples, .drop = F) %>%
dplyr::summarise(cell_type_proportion = sum(cell_type_proportion)) %>%
dplyr::arrange(sample_id, cells, samples, -cell_type_proportion)
# Plot
results$ranks %>%
dplyr::filter(source == "Scaden deconvolution") %>%
dplyr::select(-cells, -samples) %>%
dplyr::inner_join(old_results %>%
dplyr::filter(cells == 1000, samples == 1000, Celltype != "Unclassified") %>%
dplyr::ungroup() %>%
dplyr::select(-cells, -samples) %>%
dplyr::rename(cell_type_proportion_old = cell_type_proportion),
by = c("sample_id", "Celltype", "source")) %>%
ggplot(aes(x = cell_type_proportion, y = cell_type_proportion_old)) +
geom_point() +
labs(x = "New scaden predictions", y = "Old scaden predictions") +
theme_rhr
# Correlation of proportions for each cell type between new and old scaden predictions
cor.test(results$ranks %>%
dplyr::filter(source == "Scaden deconvolution" & cells == 1000 & samples == 1000) %>%
dplyr::arrange(sample_id, Celltype) %>%
.[["cell_type_proportion"]],
old_results %>%
dplyr::filter(cells == 1000, samples == 1000, Celltype != "Unclassified") %>%
dplyr::arrange(sample_id, Celltype) %>%
.[["cell_type_proportion"]],
method = "spearman")
##
## Spearman's rank correlation rho
##
## data: results$ranks %>% dplyr::filter(source == "Scaden deconvolution" & and old_results %>% dplyr::filter(cells == 1000, samples == 1000, cells == 1000 & samples == 1000) %>% dplyr::arrange(sample_id, and Celltype != "Unclassified") %>% dplyr::arrange(sample_id, Celltype) %>% .[["cell_type_proportion"]] and Celltype) %>% .[["cell_type_proportion"]]
## S = 17478, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.9778828
data_to_plot <-
results$ranks %>%
dplyr::filter(source == "Scaden deconvolution" & cells == 1000 & samples == 1000 |
source == "snRNA-seq") %>%
dplyr::select(sample_id, Celltype, cell_type_proportion, source) %>%
tidyr::spread(key = source, value = cell_type_proportion) %>%
dplyr::filter(Celltype != "Unclassified")
data_to_plot %>%
ggplot(aes(x = `Scaden deconvolution`, y = `snRNA-seq`)) +
geom_point() +
ggpubr::stat_cor(method = "spearman", label.x.npc = "centre", label.y.npc = "top", size = 2) +
facet_wrap(~ Celltype, scales = "free") +
labs(x = "Scaden cell-type proportions", "snRNA-seq cell-type proportions") +
theme_rhr +
theme(axis.text.x = element_text(angle = 0))
Figure 4.1: Scatterplot of cell-type proportions derived from snRNA-seq labelling or from scaden predictions across cell types.
# Overall correlation
print("Overall correlation")
## [1] "Overall correlation"
cor.test(data_to_plot$`Scaden deconvolution`,
data_to_plot$`snRNA-seq`,
method = "spearman")
##
## Spearman's rank correlation rho
##
## data: data_to_plot$`Scaden deconvolution` and data_to_plot$`snRNA-seq`
## S = 589400, p-value = 0.0009174
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.2541544
# Correlation of rankings for each cell type between scaden predictions and snRNA-seq proportions
print("Correlation by cell type")
## [1] "Correlation by cell type"
data_to_plot %>%
dplyr::filter(Celltype != "Unclassified") %>%
tidyr::nest(-Celltype) %>%
dplyr::mutate(test = purrr::map(data, ~ cor.test(.x$`Scaden deconvolution`, .x$`snRNA-seq`, method = "spearman")),
tidied = map(test, broom::tidy)) %>%
tidyr::unnest(tidied, .drop = TRUE) %>%
dplyr::select(-data, -test) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
Figure 4.2: Cell-type proportions derived from scaden deconvolution predictions or single-nuclear cell-type assignments grouped by disease status. Scaden neural networks were trained using simulated bulk RNA-sequencing profiles generated from each individual's single-nuclear RNA-sequencing data; 1000 simulated bulk samples were prepared per subject, using 1000 nuclei per sample. Once trained, Scaden was used to predict cell-type proportions for bulk RNA-sequencing data derived from the same individuals. Single-nuclear cell-type proportions were calculated per individual, by dividing the number of cells assigned to a cell type by the total number of cells. Cell-type proportions are summarised by cell type in each disease group. Cell types are coloured by their overarching cell-type class.
Figure 4.3: Ratio of glia-to-neurons and non-neurons-to-neurons across disease groups, as calculated using cell-type proportions derived from scaden deconvolution predictions or single-nuclear cell-type assignments. Scaden neural networks were trained using simulated bulk RNA-sequencing profiles generated from each individual's single-nuclear RNA-sequencing data; 1000 simulated bulk samples were prepared per subject, using 100 nuclei per sample.
# Median values
results$ratios %>%
dplyr::group_by(source, Disease_Group, ratio) %>%
dplyr::summarise(median = median(value))
results$ranks %>%
dplyr::filter(source == "Scaden deconvolution") %>%
dplyr::select(-rank_within_sample, -cells, -samples, -source) %>%
tidyr::spread(key = Disease_Group, value = cell_type_proportion) %>%
dplyr::group_by(Celltype) %>%
dplyr::mutate(median_control = median(Control, na.rm = T)) %>%
dplyr::ungroup() %>%
# Calculate fold change from reference, controls, by dividing each column by median_control
dplyr::mutate_at(.vars = vars("Control", "PD", "PDD", "DLB"), .funs = function(x){x/.[["median_control"]]}) %>%
dplyr::select(-median_control) %>%
tidyr::gather(key = "Disease_Group", value = "cell_type_proportion_relative_to_control", -sample_id, -Celltype, -Celltype_class) %>%
# dplyr::filter(Celltype == "Excitatory") %>%
ggplot(aes(x = Celltype,
y = cell_type_proportion_relative_to_control,
fill = fct_relevel(Disease_Group,
c("Control", "PD", "PDD", "DLB")))) +
geom_boxplot() +
# scale_fill_manual(values = pal_jco("default", alpha = 0.9)(10)[c(3,9,1,2)]) +
scale_fill_manual(values = c("#868686", "#c4ebe3", "#73cab9", "#19967d")) +
coord_cartesian(ylim = c(0,8)) +
labs(x = "Cell type", y = "Cell type proportion relative to controls", fill = "Disease group") +
theme_rhr
Figure 4.4: Cell-type proportions derived from scaden deconvolution. Scaden neural networks were trained using simulated bulk RNA-sequencing profiles generated from each individual's single-nuclear RNA-sequencing data; 1000 simulated bulk samples were prepared per subject, using 1000 nuclei per sample. Once trained, Scaden was used to predict cell-type proportions for bulk RNA-sequencing data derived from the same individuals. Cell-type proportions are grouped by cell type and disease status and displayed relative to the median of controls (within a cell type).
results$ranks %>%
dplyr::filter(source == "Scaden deconvolution" & Celltype!= "Unclassified" & cells == "1000" & samples == "1000") %>%
dplyr::group_by(Celltype) %>%
dplyr::do(kruskal.test(x= .$cell_type_proportion, g = .$Disease_Group) %>%
broom::tidy()) %>%
dplyr::arrange(p.value) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
results$ranks %>%
dplyr::filter(source == "Scaden deconvolution" & Celltype!= "Unclassified" & cells == "1000" & samples == "1000") %>%
dplyr::group_by(Celltype) %>%
dplyr::do(pairwise.wilcox.test(x= .$cell_type_proportion, g = .$Disease_Group, p.adjust.method = "none", paired = FALSE) %>%
broom::tidy()) %>%
dplyr::mutate(fdr = p.adjust(p.value, method = "BH")) %>%
dplyr::arrange(fdr) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
results_lm <- results$ranks %>%
dplyr::inner_join(sample_info %>%
dplyr::select(sample_id, RIN = RINe_bulkRNA_Tapestation)) %>%
dplyr::filter(source == "Scaden deconvolution" & Celltype!= "Unclassified" & cells == "1000" & samples == "1000") %>%
dplyr::group_by(Celltype) %>%
dplyr::do(lm(cell_type_proportion ~ Disease_Group + RIN, data = .) %>%
broom::tidy()) %>%
dplyr::mutate(fdr = p.adjust(p.value, method = "BH"))
results_lm %>%
dplyr::arrange(Celltype) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
results_lm %>%
dplyr::rename(model = Celltype) %>%
dotwhisker::small_multiple(dot_args = list(colour = "#888888", size = 0.5)) +
geom_point(data = subset(results_lm, fdr < 0.1 & term != "(Intercept)"), aes(x = Celltype, y = estimate), colour = "black", pch = 19, size = 3) +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(x = "", y = "Coefficient estimate") +
coord_flip() +
theme_rhr +
theme(panel.grid.major.y = element_blank(),
legend.position = "none")
Figure 4.5: Plot of regression coefficient estimates for each cell type. Linear regression models were fitted separately for each cell type. Whiskers span 95% confidence interval.
a <- results$ranks %>%
dplyr::filter(source == "Scaden deconvolution") %>%
dplyr::select(-rank_within_sample, -cells, -samples, -source, -Celltype_class) %>%
dplyr::mutate(median_neuron = results$ranks %>%
dplyr::filter(source == "Scaden deconvolution", Celltype == "Excitatory", Disease_Group == "Control") %>%
dplyr::group_by(Celltype) %>%
dplyr::summarise(median_neurons = median(cell_type_proportion)) %>%
.[["median_neurons"]],
relative_cell_type_proportion = cell_type_proportion/median_neuron) %>%
ggplot(aes(x = Celltype,
y = relative_cell_type_proportion,
fill = fct_relevel(Disease_Group,
c("Control", "PD", "PDD", "DLB")))) +
geom_boxplot() +
# scale_fill_manual(values = pal_jco("default", alpha = 0.9)(10)[c(3,9,1,2)]) +
scale_fill_manual(values = c("#868686", "#c4ebe3", "#73cab9", "#19967d")) +
labs(x = "Cell type", y = "Cell type proportion relative to\n median of excitatory neurons in controls", fill = "Disease group") +
theme_rhr
b <- results$ranks %>%
dplyr::filter(source == "Scaden deconvolution") %>%
ggplot(aes(x = Celltype,
y = cell_type_proportion,
fill = fct_relevel(Disease_Group,
c("Control", "PD", "PDD", "DLB")))) +
geom_boxplot() +
# scale_fill_manual(values = pal_jco("default", alpha = 0.9)(10)[c(3,9,1,2)]) +
scale_fill_manual(values = c("#868686", "#c4ebe3", "#73cab9", "#19967d")) +
labs(x = "Cell type", y = "Cell type proportion", fill = "Disease group") +
theme_rhr
ggarrange(a, b,
nrow = 2,
labels = c("a", "b"),
common.legend = T)
Figure 4.6: Cell-type proportions derived from scaden deconvolution either (a) displayed relative to the median proportion of excitatory neurons in controls or (b) not relative to anything. Scaden neural networks were trained using simulated bulk RNA-sequencing profiles generated from each individual's single-nuclear RNA-sequencing data; 1000 simulated bulk samples were prepared per subject, using 1000 nuclei per sample. Once trained, Scaden was used to predict cell-type proportions for bulk RNA-sequencing data derived from the same individuals.
sessionInfo()
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.6 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] forcats_0.5.1 stringr_1.4.0
## [3] dplyr_1.0.2 purrr_0.3.4
## [5] readr_1.4.0 tidyr_1.1.1
## [7] tibble_3.0.3 tidyverse_1.3.0
## [9] readxl_1.3.1 ggpubr_0.4.0
## [11] ggsci_2.9 DESeq2_1.26.0
## [13] SummarizedExperiment_1.16.1 DelayedArray_0.12.3
## [15] BiocParallel_1.20.1 matrixStats_0.56.0
## [17] Biobase_2.46.0 GenomicRanges_1.38.0
## [19] GenomeInfoDb_1.22.1 IRanges_2.20.2
## [21] S4Vectors_0.24.4 BiocGenerics_0.32.0
## [23] DT_0.15 dotwhisker_0.5.0
## [25] ggplot2_3.3.2 DescTools_0.99.37
## [27] biomaRt_2.42.1
##
## loaded via a namespace (and not attached):
## [1] backports_1.1.8 Hmisc_4.4-1 BiocFileCache_1.10.2
## [4] splines_3.6.1 crosstalk_1.1.0.1 digest_0.6.27
## [7] htmltools_0.5.1.1 magrittr_2.0.1 checkmate_2.0.0
## [10] memoise_2.0.0 cluster_2.1.0 openxlsx_4.2.3
## [13] annotate_1.64.0 modelr_0.1.8 askpass_1.1
## [16] prettyunits_1.1.1 jpeg_0.1-8.1 colorspace_2.0-0
## [19] blob_1.2.1 rvest_0.3.6 rappdirs_0.3.1
## [22] haven_2.3.1 xfun_0.16 crayon_1.4.1
## [25] RCurl_1.98-1.2 jsonlite_1.7.1 genefilter_1.68.0
## [28] Exact_2.0 survival_3.2-7 glue_1.4.2
## [31] gtable_0.3.0 zlibbioc_1.32.0 XVector_0.26.0
## [34] car_3.0-9 abind_1.4-5 scales_1.1.1
## [37] mvtnorm_1.1-1 DBI_1.1.1 rstatix_0.6.0
## [40] Rcpp_1.0.5 xtable_1.8-4 progress_1.2.2
## [43] htmlTable_2.0.1 ggstance_0.3.4 foreign_0.8-72
## [46] bit_4.0.4 Formula_1.2-4 htmlwidgets_1.5.3
## [49] httr_1.4.2 RColorBrewer_1.1-2 ellipsis_0.3.1
## [52] pkgconfig_2.0.3 XML_3.99-0.3 farver_2.0.3
## [55] nnet_7.3-12 dbplyr_1.4.4 locfit_1.5-9.4
## [58] here_1.0.0 tidyselect_1.1.0 labeling_0.4.2
## [61] rlang_0.4.7 AnnotationDbi_1.48.0 munsell_0.5.0
## [64] cellranger_1.1.0 tools_3.6.1 cachem_1.0.3
## [67] cli_2.2.0.9000 generics_0.0.2 RSQLite_2.2.0
## [70] broom_0.7.0 evaluate_0.14 fastmap_1.0.1
## [73] yaml_2.2.1 knitr_1.29 bit64_4.0.2
## [76] fs_1.5.0 zip_2.1.0 xml2_1.3.2
## [79] compiler_3.6.1 rstudioapi_0.13 curl_4.3
## [82] png_0.1-7 ggsignif_0.6.0 reprex_1.0.0
## [85] geneplotter_1.64.0 stringi_1.5.3 highr_0.8
## [88] lattice_0.20-38 Matrix_1.2-17 vctrs_0.3.2
## [91] pillar_1.4.6 lifecycle_0.2.0 cowplot_1.0.0
## [94] data.table_1.13.0 bitops_1.0-6 R6_2.5.0
## [97] latticeExtra_0.6-29 bookdown_0.21 gridExtra_2.3
## [100] rio_0.5.16 boot_1.3-23 MASS_7.3-51.4
## [103] assertthat_0.2.1 openssl_1.4.2 rprojroot_2.0.2
## [106] withr_2.2.0 GenomeInfoDbData_1.2.2 expm_0.999-5
## [109] hms_1.0.0 grid_3.6.1 rpart_4.1-15
## [112] rmarkdown_2.5 carData_3.0-4 lubridate_1.7.9
## [115] base64enc_0.1-3