Aim: use stratified LDSC to test whether PD heritability enriches within top 10% most cell-type specific genes and to check whether there is a linear relationship between heritability enrichment values and cell-type specificity deciles.
source(here::here("R", "file_paths.R"))
source(here::here("R", "EWCE_related_functions.R"))
source(here::here("R", "upsetR_common.R"))
s-LDSC is a method that allows you to determine the relative contribution of an annotation to disease heritability. We use the co-efficient p-value as our read-out for significance, as it tells us whether our annotation is significantly contributing to disease heritability after we have accounted for underlying genetic architecture (as represented by a 53-annotation baseline model, which tags coding regions, enhancer regions, histones, promoters, etc.).
# Load ctd files and plot dendrograms
ctd_files <- list.files(
file.path(
path_to_results,
"snRNA/specificity_matrices/2020_Feb"
),
pattern = "ctd",
full.names = T)
# Inititate empty vectors
plot_list <- vector(mode = "list", length = length(ctd_files))
ctd_list <- vector(mode = "list", length = length(ctd_files))
# Loop to load data and plot dendrogram
for(i in 1:length(ctd_files)){
# Load ctd
ctd_list[[i]] <- readRDS(ctd_files[i])
# Extract file name
title <-
ctd_files[i] %>%
str_replace(".*/", "") %>%
str_replace("\\..*", "") %>%
str_replace(".*_", "")
# Name list
names(ctd_list)[i] <- title
# Create dendrogram
plot_list[[i]] <-
plot_dendrogram(ctd_list[[i]] , level = 1) +
labs(title = str_c("Dendrogram for ", title))
}
ggarrange(plotlist = plot_list)
Figure 3.1: Dendrogram showing clustering of cell type specificity quantiles (n = 40) from each cell-type specificity matrix. Distance shown is euclidian distance.
# Create deciles dataframe
decile_df <- ctd_list %>%
lapply(., function(ctd){
# Only using level 1 annotations
ctd[[1]]$specificity %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "gene") %>%
dplyr::mutate(Vascular = Endo + Per) %>%
tidyr::gather(key = "cell_type", value = "specificity", -gene) %>%
dplyr::group_by(cell_type) %>%
dplyr::mutate(quantile = ntile(specificity, 10))
}) %>%
qdapTools::list_df2df(col = "Disease_Group")
# Check order of deciles
decile_df %>%
dplyr::mutate(Disease_Group = fct_relevel(Disease_Group,
c("Control", "PD", "PDD", "DLB"))) %>%
ggplot(aes(x = as.factor(quantile), y = specificity)) +
geom_boxplot() +
facet_grid(Disease_Group ~ cell_type) +
labs(x = "Quantile") +
theme_rhr
Figure 3.2: Plot of specificity values across quantiles in each cell type in each disease group.
# Check that within each disease group and decile equal number of genes across cell types
decile_df %>%
dplyr::group_by(quantile, Disease_Group, cell_type) %>%
dplyr::summarise(n = n()) %>%
dplyr::arrange(Disease_Group, quantile, cell_type)
# Create gene list
gene_list <-
decile_df %>%
dplyr::filter(quantile == 10) %>%
dplyr::mutate(cell_type_disease = str_c(cell_type, ":", Disease_Group)) %>%
group_split(cell_type, Disease_Group)
names(gene_list) <- gene_list %>%
lapply(., function(df){
df %>% .[["cell_type_disease"]] %>% unique()
})
upset(fromList(gene_list %>%
lapply(., function(df){
df %>% .[["gene"]]
})),
sets = names(gene_list),
keep.order = TRUE,
nintersects = 25,
order.by = "freq")
Figure 3.3: Figure: Overlap between top 10% cell-type specificity lists from each disease group. In the matrix (lower half of panel), rows represent the top 10% cell-type specificity lists and the columns represent their intersections, with a single black filled circle representing those genes that were not found to be part of an intersection, while black filled circles connected by a vertical line represent genes that intersect across lists. The size of each intersection is shown as a bar chart above the matrix (upper half of panel), while the size of each list is shown to the left of the matrix. Only the top 25 intersections are displayed.
cd /home/rreynolds/projects/Aim2_PDsequencing_wd/LBD-seq-bulk-analyses/
nohup Rscript \
/home/rreynolds/projects/Aim2_PDsequencing_wd/LBD-seq-bulk-analyses/misc_scripts/LDSC_cell_type_specificity_deciles.R \
&>/home/rreynolds/projects/Aim2_PDsequencing_wd/LBD-seq-bulk-analyses/nohup_logs/LDSC_cell_type_specificity_deciles.log&
# LBD GWAS
nohup Rscript \
/home/rreynolds/projects/Aim2_PDsequencing_wd/LBD-seq-bulk-analyses/misc_scripts/LDSC_cell_type_specificity_deciles.R \
&>/home/rreynolds/projects/Aim2_PDsequencing_wd/LBD-seq-bulk-analyses/nohup_logs/LDSC_cell_type_specificity_deciles_LBD.log&
file_paths <-
list.files(path =
file.path(
path_to_raw_data,
"ldsc_annotations/celltype.deciles/"
),
pattern = ".results",
recursive = T,
full.names = T)
results <- LDSCforRyten::Assimilate_H2_results(path_to_results = file_paths) %>%
LDSCforRyten::Calculate_enrichment_SE_and_logP(., one_sided = "+") %>%
tidyr::separate(annot_name, into = c("Disease_Group", "cell_type", "decile"),sep = ":") %>%
dplyr::mutate(Disease_Group = fct_relevel(Disease_Group,
c("Control", "PD", "PDD", "DLB"))) %>%
dplyr::select(Disease_Group, cell_type, decile, GWAS, everything())
write_delim(results,
path =
file.path(
path_to_results,
"ldsc/sldsc_celltype_deciles.txt"
),
delim = "\t")
Let's start by looking at the top decile of specificity.
This will take into account the number of GWASs and cell types tested.
results <- read_delim(file =
file.path(
path_to_results,
"ldsc/sldsc_celltype_deciles.txt"
),
delim = "\t") %>%
dplyr::mutate(GWAS = str_replace(GWAS, "\\.hg38", ""),
GWAS = str_replace(GWAS, "2019", ""),
GWAS = str_replace_all(GWAS, "\\.", "_"))
# Multiple correct co-efficient p-value within disease
results %>%
dplyr::filter(decile == 10,
!c(cell_type %in% c("Endo", "Per"))) %>%
dplyr::group_by(Disease_Group) %>%
dplyr::mutate(Z_score_FDR = p.adjust(Z_score_P, method = "fdr")) %>%
dplyr::filter(Enrichment > 0) %>%
dplyr::select(Disease_Group, cell_type, decile, GWAS, Z_score_FDR, everything(), -contains("SE"), -contains("log")) %>%
dplyr::arrange(Z_score_FDR) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
This will take into account the number of cell types tested and uses only well-powered GWASs (AD, PD, PD AOO).
results %>%
# Filter for top decile, no endo/per cells and only well-powered GWASs
dplyr::filter(decile == 10,
!c(cell_type %in% c("Endo", "Per")),
GWAS %in% c("AD", "PD2018_AOO", "PD_meta5_ex23andMe")) %>%
dplyr::group_by(Disease_Group, GWAS) %>%
dplyr::mutate(Z_score_FDR = p.adjust(Z_score_P, method = "fdr")) %>%
dplyr::filter(Enrichment > 0,
Z_score_FDR < 0.05) %>%
dplyr::select(Disease_Group, cell_type, decile, GWAS, Z_score_P, everything(), -contains("SE", ignore.case = F), -contains("log", ignore.case = F)) %>%
dplyr::arrange(Z_score_P) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
results %>%
# Filter for top decile, no endo/per cells and only well-powered GWASs
dplyr::filter(decile == 10,
!c(cell_type %in% c("Endo", "Per")),
GWAS %in% c("AD", "PD2018_AOO", "PD_meta5_ex23andMe"),
Enrichment > 0,
Z_score_P < 0.05) %>%
dplyr::select(Disease_Group, cell_type, decile, GWAS, Z_score_P, everything(), -contains("SE", ignore.case = F), -contains("log", ignore.case = F)) %>%
dplyr::arrange(Z_score_P) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
Only those annotations where heritability proportions are above 0 for all deciles are included in this analysis. A negative prop_h2 indicates a model misspecification/GWAS underpowered.
This will take into account the number of GWASs and cell types tested.
# All deciles should have heritability proportions above 0; a negative prop_h2 indicates a model misspecification/GWAS underpowered
# Keep only those annotations where this is fulfilled across all deciles
filtered <- results %>%
dplyr::filter(Prop._h2 > 0) %>%
dplyr::group_by(Disease_Group, cell_type, GWAS) %>%
dplyr::filter(n() == 10)
# Test of linear regression
lm_results <- filtered %>%
dplyr::filter(!c(cell_type %in% c("Endo", "Per"))) %>%
dplyr::group_by(Disease_Group, cell_type, GWAS) %>%
do(lm(Enrichment ~ as.numeric(decile), data = .) %>%
broom::tidy()) %>%
# Multiple correction
dplyr::group_by(Disease_Group) %>%
dplyr::mutate(FDR = p.adjust(p.value, method = "fdr"))
# Table of lm where decile is significant term
lm_results %>%
dplyr::filter(term != "(Intercept)" & FDR < 0.05) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
Figure 4.1: GWAS enrichment values in each specificity decile for each cell types. Only significant linear regressions shown; significant threshold set to 5% FDR across cell types and GWAS tested (within each disease group). Error bars indicate 95% confidence intervals. Blue line shows the linear regression slope fitted to the enrichment values. The grey boxing around the blue regression line depict the confidence intervals of the regression line.
# Filtered for term == decile & FDR < 0.05
# Plot significant lm models
lm_results %>%
dplyr::filter(term != "(Intercept)" & FDR < 0.05) %>%
dplyr::inner_join(filtered) %>%
dplyr::ungroup() %>%
dplyr::mutate(Disease_Group = fct_relevel(Disease_Group,
c("Control", "PD", "PDD", "DLB"))) %>%
ggplot(aes(x = as.numeric(decile), y = Enrichment)) +
geom_point() +
geom_errorbar(aes(ymin = Enrichment.Lower.SE, ymax = Enrichment.Upper.SE)) +
scale_x_continuous(breaks = seq(0,10,1)) +
labs(x = "Specificity decile") +
facet_wrap(vars(GWAS, cell_type, Disease_Group), ncol = 5) +
geom_smooth(method = "lm") +
theme_rhr
Figure 4.2: GWAS enrichment values in each specificity decile for each cell types. Only significant linear regressions shown; significant threshold set to 5% FDR across cell types and GWAS tested (within each disease group). Error bars indicate 95% confidence intervals. Blue line shows the linear regression slope fitted to the enrichment values. The grey boxing around the blue regression line depict the confidence intervals of the regression line.
This will take into account the number of cell types tested and uses only well-powered GWASs (AD, PD, PD AOO).
# Test of linear regression
lm_results <- filtered %>%
dplyr::filter(!c(cell_type %in% c("Endo", "Per")),
GWAS %in% c("AD", "PD2018_AOO", "PD_meta5_ex23andMe")) %>%
dplyr::group_by(Disease_Group, cell_type, GWAS) %>%
do(lm(Enrichment ~ as.numeric(decile), data = .) %>%
broom::tidy()) %>%
# Multiple correction
dplyr::group_by(Disease_Group, GWAS) %>%
dplyr::mutate(FDR = p.adjust(p.value, method = "fdr"))
# Table of lm where decile is significant term
lm_results %>%
dplyr::filter(term != "(Intercept)",
FDR < 0.05) %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
# Filtered for term == decile & FDR < 0.05
# Plot significant lm models
lm_results %>%
dplyr::filter(term != "(Intercept)",
FDR < 0.05) %>%
dplyr::inner_join(filtered) %>%
dplyr::ungroup() %>%
dplyr::mutate(Disease_Group = fct_relevel(Disease_Group,
c("Control", "PD", "PDD", "DLB"))) %>%
ggplot(aes(x = as.numeric(decile), y = Enrichment)) +
geom_point() +
geom_errorbar(aes(ymin = Enrichment.Lower.SE, ymax = Enrichment.Upper.SE)) +
scale_x_continuous(breaks = seq(0,10,1)) +
labs(x = "Specificity decile") +
facet_wrap(vars(GWAS, cell_type, Disease_Group), ncol = 5) +
geom_smooth(method = "lm") +
theme_rhr
Figure 4.3: GWAS enrichment values in each specificity decile for each cell types. Only significant linear regressions shown; significant threshold set to 5% FDR across cell types (within each disease group). Error bars indicate 95% confidence intervals. Blue line shows the linear regression slope fitted to the enrichment values. The grey boxing around the blue regression line depict the confidence intervals of the regression line.
session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 3.6.1 (2019-07-05)
## os Ubuntu 16.04.6 LTS
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_GB.UTF-8
## ctype en_GB.UTF-8
## tz Europe/London
## date 2021-05-24
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## ! package * version date lib
## abind 1.4-5 2016-07-21 [2]
## AnnotationDbi 1.48.0 2019-10-29 [1]
## askpass 1.1 2019-01-13 [2]
## assertthat 0.2.1 2019-03-21 [2]
## backports 1.1.8 2020-06-17 [1]
## Biobase 2.46.0 2019-10-29 [1]
## BiocFileCache 1.10.2 2019-11-08 [1]
## BiocGenerics * 0.32.0 2019-10-29 [1]
## BiocParallel 1.20.1 2019-12-21 [1]
## biomaRt 2.42.1 2020-03-26 [1]
## Biostrings 2.54.0 2019-10-29 [1]
## bit 4.0.4 2020-08-04 [1]
## bit64 4.0.2 2020-07-30 [1]
## bitops 1.0-6 2013-08-17 [2]
## blob 1.2.1 2020-01-20 [1]
## bookdown 0.21 2020-10-13 [1]
## broom 0.7.0 2020-07-09 [1]
## BSgenome 1.54.0 2019-10-29 [1]
## cachem 1.0.3 2021-02-04 [1]
## callr 3.5.1 2020-10-13 [1]
## car 3.0-9 2020-08-11 [1]
## carData 3.0-4 2020-05-22 [1]
## caTools 1.18.0 2020-01-17 [1]
## cellranger 1.1.0 2016-07-27 [2]
## chron 2.3-56 2020-08-18 [1]
## cli 2.2.0.9000 2021-01-22 [1]
## codetools 0.2-16 2018-12-24 [4]
## colorspace 2.0-0 2020-11-11 [2]
## corrplot * 0.84 2017-10-16 [1]
## cowplot 1.0.0 2019-07-11 [1]
## crayon 1.4.1 2021-02-08 [2]
## crosstalk 1.1.0.1 2020-03-13 [1]
## curl 4.3 2019-12-02 [2]
## data.table 1.13.0 2020-07-24 [1]
## DBI 1.1.1 2021-01-15 [2]
## dbplyr 1.4.4 2020-05-27 [1]
## DelayedArray 0.12.3 2020-04-09 [1]
## desc 1.2.0 2018-05-01 [1]
## devtools * 2.3.2 2020-09-18 [1]
## digest 0.6.27 2020-10-24 [2]
## doParallel * 1.0.15 2019-08-02 [1]
## dplyr * 1.0.2 2020-08-18 [1]
## DT * 0.15 2020-08-05 [1]
## ellipsis 0.3.1 2020-05-15 [1]
## evaluate 0.14 2019-05-28 [2]
## farver 2.0.3 2020-01-16 [1]
## fastmap 1.0.1 2019-10-08 [1]
## forcats * 0.5.1 2021-01-27 [2]
## foreach * 1.5.0 2020-03-30 [1]
## foreign 0.8-72 2019-08-02 [4]
## fs 1.5.0 2020-07-31 [1]
## gdata 2.18.0 2017-06-06 [1]
## GeneOverlap * 1.22.0 2019-10-29 [1]
## generics 0.0.2 2018-11-29 [1]
## GenomeInfoDb * 1.22.1 2020-03-27 [1]
## GenomeInfoDbData 1.2.2 2020-08-24 [1]
## GenomicAlignments 1.22.1 2019-11-12 [1]
## GenomicRanges * 1.38.0 2019-10-29 [1]
## getopt 1.20.3 2019-03-22 [2]
## ggdendro * 0.1.21 2020-08-11 [1]
## ggplot2 * 3.3.2 2020-06-19 [1]
## ggpubr * 0.4.0 2020-06-27 [1]
## ggsignif 0.6.0 2019-11-04 [1]
## glue 1.4.2 2020-08-27 [1]
## gplots 3.0.4 2020-07-05 [1]
## gridExtra 2.3 2017-09-09 [2]
## gtable 0.3.0 2019-03-25 [2]
## gtools 3.8.2 2020-03-31 [1]
## haven 2.3.1 2020-06-01 [1]
## here 1.0.0 2020-11-15 [1]
## highr 0.8 2019-03-20 [2]
## hms 1.0.0 2021-01-13 [2]
## htmltools 0.5.1.1 2021-01-22 [1]
## htmlwidgets 1.5.3 2020-12-10 [2]
## httr 1.4.2 2020-07-20 [1]
## IRanges * 2.20.2 2020-01-13 [1]
## iterators * 1.0.12 2019-07-26 [2]
## jsonlite 1.7.1 2020-09-07 [1]
## KernSmooth 2.23-15 2015-06-29 [4]
## knitr 1.29 2020-06-23 [1]
## labeling 0.4.2 2020-10-20 [2]
## lattice 0.20-38 2018-11-04 [4]
## VP LDSCforRyten * 0.99.1 2020-04-03 [?]
## lifecycle 0.2.0 2020-03-06 [1]
## lubridate 1.7.9 2020-06-08 [1]
## magrittr 2.0.1 2020-11-17 [2]
## MASS 7.3-51.4 2019-04-26 [4]
## Matrix 1.2-17 2019-03-22 [4]
## matrixStats 0.56.0 2020-03-13 [1]
## memoise 2.0.0 2021-01-26 [2]
## mgcv 1.8-29 2019-09-20 [4]
## modelr 0.1.8 2020-05-19 [1]
## munsell 0.5.0 2018-06-12 [2]
## nlme 3.1-141 2019-08-01 [4]
## openssl 1.4.2 2020-06-27 [1]
## openxlsx 4.2.3 2020-10-27 [1]
## optparse 1.6.6 2020-04-16 [1]
## pillar 1.4.6 2020-07-10 [1]
## pkgbuild 1.1.0 2020-07-13 [1]
## pkgconfig 2.0.3 2019-09-22 [2]
## pkgload 1.1.0 2020-05-29 [1]
## plyr 1.8.6 2020-03-03 [2]
## prettyunits 1.1.1 2020-01-24 [1]
## processx 3.4.5 2020-11-30 [1]
## progress 1.2.2 2019-05-16 [2]
## ps 1.3.4 2020-08-11 [1]
## purrr * 0.3.4 2020-04-17 [1]
## qdapTools 1.3.5 2020-04-17 [1]
## R.methodsS3 1.8.1 2020-08-26 [2]
## R.oo 1.24.0 2020-08-26 [2]
## R.utils 2.10.1 2020-08-26 [2]
## R6 2.5.0 2020-10-28 [2]
## rappdirs 0.3.1 2016-03-28 [1]
## RColorBrewer 1.1-2 2014-12-07 [2]
## Rcpp 1.0.5 2020-07-06 [1]
## RCurl 1.98-1.2 2020-04-18 [1]
## readr * 1.4.0 2020-10-05 [2]
## readxl * 1.3.1 2019-03-13 [2]
## remotes 2.2.0 2020-07-21 [1]
## reprex 2.0.0 2021-04-02 [2]
## rio 0.5.16 2018-11-26 [1]
## rlang 0.4.7 2020-07-09 [1]
## rmarkdown 2.5 2020-10-21 [1]
## rprojroot 2.0.2 2020-11-15 [1]
## Rsamtools 2.2.3 2020-02-23 [1]
## RSQLite 2.2.0 2020-01-07 [1]
## rstatix 0.6.0 2020-06-18 [1]
## rstudioapi 0.13 2020-11-12 [2]
## rtracklayer * 1.46.0 2019-10-29 [1]
## rvest 0.3.6 2020-07-25 [1]
## S4Vectors * 0.24.4 2020-04-09 [1]
## scales 1.1.1 2020-05-11 [1]
## sessioninfo 1.1.1 2018-11-05 [2]
## stringi 1.5.3 2020-09-09 [2]
## stringr * 1.4.0 2019-02-10 [2]
## SummarizedExperiment 1.16.1 2019-12-19 [1]
## testthat 2.3.2 2020-03-02 [1]
## tibble * 3.0.3 2020-07-10 [1]
## tidyr * 1.1.1 2020-07-31 [1]
## tidyselect 1.1.0 2020-05-11 [1]
## tidyverse * 1.3.0 2019-11-21 [1]
## UpSetR * 1.4.0 2019-05-22 [1]
## usethis * 1.6.3 2020-09-17 [1]
## vctrs 0.3.2 2020-07-15 [1]
## withr 2.2.0 2020-04-20 [1]
## xfun 0.16 2020-07-24 [1]
## XML 3.99-0.3 2020-01-20 [2]
## xml2 1.3.2 2020-04-23 [1]
## XVector 0.26.0 2019-10-29 [1]
## yaml 2.2.1 2020-02-01 [1]
## zip 2.1.0 2020-08-10 [1]
## zlibbioc 1.32.0 2019-10-29 [1]
## source
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## Bioconductor
## Bioconductor
## Bioconductor
## Bioconductor
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Github (r-lib/cli@4b41c51)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## Bioconductor
## Bioconductor
## Bioconductor
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Github (const-ae/ggsignif@5a05d88)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Github (RHReynolds/LDSCforRyten@e805257)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
## CRAN (R 3.6.1)
## CRAN (R 3.6.1)
## Bioconductor
##
## [1] /home/rreynolds/R/x86_64-pc-linux-gnu-library/3.6
## [2] /usr/local/lib/R/site-library
## [3] /usr/lib/R/site-library
## [4] /usr/lib/R/library
##
## V ── Loaded and on-disk version mismatch.
## P ── Loaded and on-disk path mismatch.