Aim: to format SRP058181, such that it can be used to validate (i) deconvolution and (ii) differentially spliced genes
source(here::here("R", "file_paths.R"))
sample_info <-
read_excel(
path =
file.path(
path_to_raw_data,
"sample_details/SRP058181_sample_metadata.xlsx")
) %>%
dplyr::na_if(.,"N/A") %>%
dplyr::select(-Proteomics, -Proteomics_SV1, -Proteomics_SV2, -Proteomics_SV3, -Microarray_study_ID) %>%
dplyr::mutate(sample_id = `RNA-Seq_Samples`,
Braak_score = Braak_score %>%
str_replace_all(c("IV" = "4",
"II-III" = "3",
"I-II" = "2",
"III" = "3",
"II" = "2",
"I" = "1")) %>%
as.integer(),
Disease_group = ifelse(Condition == "Control", "Control",
ifelse(Condition == "PD" & Dementia == "no", "PD",
ifelse(Condition == "PD" & Dementia == "yes", "PDD", NA))),
Disease_group = replace_na(Disease_group, "PD") %>%
ordered(levels = c("Control", "PD", "PDD"))) %>%
dplyr::select(sample_id, Disease_group, everything(), -`RNA-Seq_Samples`)
recount
package. As we already have mean coverage and bigwigs, these do not need to be downloaded.library(recount)
counts <- c("rse-gene", "rse-exon", "counts-gene", "counts-exon")
junctions <- c("rse-jx", "counts-jx")
for(i in 1:length(counts)){
download_study("SRP058181",
type = counts[i],
outdir = file.path(path_to_recount, "counts"),
download = TRUE)
}
for(i in 1:length(junctions)){
download_study("SRP058181",
type = junctions[i],
outdir = file.path(path_to_recount, "junctions"),
download = TRUE)
}
download_study(
"SRP058181",
type = "phenotype",
outdir = path_to_recount,
download = TRUE
)
For details, see: SRP058181_post_quant_QC.html
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.6 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] UpSetR_1.4.0 rtracklayer_1.46.0
## [3] GenomicRanges_1.38.0 GenomeInfoDb_1.22.1
## [5] IRanges_2.20.2 S4Vectors_0.24.4
## [7] BiocGenerics_0.32.0 RNAseqProcessing_0.0.0.9000
## [9] readxl_1.3.1 forcats_0.5.1
## [11] stringr_1.4.0 dplyr_1.0.2
## [13] purrr_0.3.4 readr_1.4.0
## [15] tidyr_1.1.1 tibble_3.0.3
## [17] tidyverse_1.3.0 ggpubr_0.4.0
## [19] ggplot2_3.3.2 ggsci_2.9
## [21] GeneOverlap_1.22.0 gProfileR_0.7.0
## [23] data.table_1.13.0 corrplot_0.84
## [25] broom_0.7.0
##
## loaded via a namespace (and not attached):
## [1] colorspace_2.0-0 ggsignif_0.6.0
## [3] ellipsis_0.3.1 rio_0.5.16
## [5] rprojroot_2.0.2 XVector_0.26.0
## [7] fs_1.5.0 rstudioapi_0.13
## [9] farver_2.0.3 DT_0.15
## [11] lubridate_1.7.9 xml2_1.3.2
## [13] knitr_1.29 jsonlite_1.7.1
## [15] Rsamtools_2.2.3 dbplyr_1.4.4
## [17] png_0.1-7 compiler_3.6.1
## [19] httr_1.4.2 backports_1.1.8
## [21] assertthat_0.2.1 Matrix_1.2-17
## [23] cli_2.2.0.9000 htmltools_0.5.1.1
## [25] tools_3.6.1 gtable_0.3.0
## [27] glue_1.4.2 GenomeInfoDbData_1.2.2
## [29] Rcpp_1.0.5 carData_3.0-4
## [31] Biobase_2.46.0 cellranger_1.1.0
## [33] vctrs_0.3.2 Biostrings_2.54.0
## [35] gdata_2.18.0 crosstalk_1.1.0.1
## [37] xfun_0.16 openxlsx_4.2.3
## [39] rvest_0.3.6 lifecycle_0.2.0
## [41] gtools_3.8.2 rstatix_0.6.0
## [43] XML_3.99-0.3 zlibbioc_1.32.0
## [45] scales_1.1.1 hms_1.0.0
## [47] SummarizedExperiment_1.16.1 RColorBrewer_1.1-2
## [49] yaml_2.2.1 curl_4.3
## [51] gridExtra_2.3 stringi_1.5.3
## [53] highr_0.8 caTools_1.18.0
## [55] zip_2.1.0 BiocParallel_1.20.1
## [57] rlang_0.4.7 pkgconfig_2.0.3
## [59] bitops_1.0-6 matrixStats_0.56.0
## [61] evaluate_0.14 lattice_0.20-38
## [63] labeling_0.4.2 htmlwidgets_1.5.3
## [65] GenomicAlignments_1.22.1 cowplot_1.0.0
## [67] tidyselect_1.1.0 here_1.0.0
## [69] plyr_1.8.6 magrittr_2.0.1
## [71] bookdown_0.21 R6_2.5.0
## [73] gplots_3.0.4 generics_0.0.2
## [75] DelayedArray_0.12.3 DBI_1.1.1
## [77] pillar_1.4.6 haven_2.3.1
## [79] foreign_0.8-72 withr_2.2.0
## [81] abind_1.4-5 RCurl_1.98-1.2
## [83] modelr_0.1.8 crayon_1.4.1
## [85] car_3.0-9 KernSmooth_2.23-15
## [87] rmarkdown_2.5 grid_3.6.1
## [89] blob_1.2.1 reprex_1.0.0
## [91] digest_0.6.27 munsell_0.5.0