query_gene_ctd_tutorial.Rmd
MarkerGenes::query_gene_ctd()
function, which allows users to query a gene or several genes within
several specificity matrices.
readxl::read_excel(
path = here::here("metadata", "dataset_metadata.xlsx"),
sheet = "Data"
) %>%
dplyr::filter(species == "human", data_type == "SI_matrix") %>%
DT::datatable(rownames = FALSE,
options = list(scrollX = TRUE),
class = 'white-space: nowrap')
# Load specificity matrices
load(here::here("specificity_matrices", "AIBS2018_MTG.rda"))
load(here::here("specificity_matrices", "Habib2017_DroNc_Human.rda"))
load(here::here("specificity_matrices", "Agarwal2020_SNIG.rda"))
#> Warning: namespace 'EWCE' is not available and has been replaced
#> by .GlobalEnv when processing object 'ctd_Agarwal2020_SNIG'
specificity <-
MarkerGenes::query_gene_ctd(
genes = c("SNCA"),
ctd_AIBS2018, ctd_DRONC_human, ctd_Agarwal2020_SNIG,
celltypeLevel = 1,
median_included = F,
genelistSpecies = "human",
ctdSpecies = "human"
)
# Plot
specificity %>%
ggplot2::ggplot(
ggplot2::aes(
x = MarkerGenes::reorder_within(
x = CellType,
by = Specificity,
within = Study,
fun = median,
desc = T
),
y = Specificity)) +
ggplot2::geom_col() +
MarkerGenes::scale_x_reordered() +
ggplot2::facet_wrap(ggplot2::vars(Study), scales = "free_x") +
ggplot2::labs(x = "CellType") +
theme_rhr
Figure: Plot of SNCA specificity value across three single-nuclear RNA-seq datasets. exPFC=glutamatergic neurons from the PFC, exCA1/3=pyramidal neurons from the Hip CA region, GABA=GABAergic interneurons, exDG=granule neurons from the Hip dentate gyrus region, ASC=astrocytes, NSC=neuronal stem cells, MG=microglia, ODC=oligodendrocytes, OPC=oligodendrocyte precursor cells, NSC=neuronal stem cells, SMC=smooth muscle cells, END= endothelial cells.